New material solutions for industrial LED production

Marko Vogler, Manuel Thesen, Anja Voigt, Arne Schleunitz

micro resist technology GmbH
Köpenicker Str. 325
12555 Berlin, Germany

Ahead Optoelectronics, Inc.
5F, No. 66, Jian-San Road
Chungho, New Taipei City 235 Taiwan
Outline

• Company Introduction and Products
• Innovative material solutions for industrial LED production
 1. Patterned sapphire substrates by nanoimprint lithography
 2. Photonic crystal for HB-LEDS patterns by nanoimprint lithography
 3. Alternative LED fabrication concept: Nanowire approach
 4. Photoresists for lift-off applications, single layer processes
 5. Potential Alternative Materials for LED packaging: Hybrid polymers
• Summary
micro resist technology GmbH – Company Facts

Producer, developer & supplier of innovative resists, polymers, photopolymers, ancillaries for use in MEMS applications, semiconductor industry, micro and nanotechnology and optoelectronics

- **Established:**
 1993 as a chemical company

- **Employees:** 52 (2015)

- **Facility:**
 Since 2011 new facility with 2.500 m² incl. production, clean room, office space (MRT total: 3.450 m² facility)

- **Certifications:**
 DIN EN ISO 9001:2009
 DIN EN ISO 14001
micro resist technology GmbH - Product Groups

Negative Photoresists
- UV resists for single layer lift-off
 - ma-N 400
 - ma-N 1400
- DUV/ e-beam resists
 - ma-N 2400
 - mr-EBL 6000
- Direct Laser Writing
 - mr-DWL @ 405 nm
- Waveguide application
 - EpoCore / EpoClad

Positive Photoresists
- Standard UV-resists
 - ma-P 1200
- High viscosity UV-resists
 - ma-P 1275/
 - ma-P 1275HV
- Greyscale UV-resists
 - ma-P 1275G

NIL Materials
- Thermal NIL
 - mr-I 7000R/ 8000R
 - mr-I T85
 - mr-I 9000M
 - SIPOL
- Thermal / UV NIL
 - mr-NIL 6000E
- UV-based NIL
 - mr-NIL210
 - mr-UVCur series
 - mr-XNIL series

Hybrid Polymers
- Inorganic-organic hybrid polymers
- Optical application
 - OrmoComp®
 - OrmoClear®FX
 - InkOrmo
- Waveguide application
 - OrmoCore
 - OrmoClad
- Transparent stamps
 - OrmoStamp®

Distribution in Europe for:
- Dow Electronic Materials, MicroChem Corp. (SU 8/2000/3000, PMGI, PMMA),
- DuPont (Dry film), ShinEtsu (Photo-curable PDMS)
micro resist technology GmbH – business fields, markets

Energy & Lighting Technology
- High brightness LED
- Nanotextured solar cells
- OLED devices
- Opto-Electronics

Consumer Electronics Display Technology
- Micro lenses
- Sensors & Actuators
- Backlighting devices
- Mass storage devices

Health Care Life-Sciences
- Microfluidics & Microarrays
- Waveguides & X-ray lenses
- Surface functionalization (Biomimetics)

Security Features
- Holographic images protecting products and documents

Manufacturing
- Technology enabling materials
micro resist technology GmbH – global exports

Joint booth: K0525
5 application examples along the LED production chain:

1. Patterned sapphire substrates by nanoimprint lithography
2. Photonic crystal for HB-LEDs patterns by nanoimprint lithography
3. Alternative LED fabrication concept: Nanowire approach
4. Photoresists for lift-off applications, single layer processes
5. Potential alternative materials for LED packaging: Hybrid polymers
Patterned Sapphire Substrates (PSS) for HB-LEDs by nanoimprint lithography (NIL)

- NIL as cost-efficient alternative to stepper lithography
- Nanoimprint Resists by *micro resist technology*
 - mr-NIL 6000E series
 - mr-NIL210 series (PDMS compatibility)
What is Nanoimprint Lithography?

NIL process scheme

<table>
<thead>
<tr>
<th>Process step</th>
<th>Thermal-NIL</th>
<th>UV-NIL</th>
<th>Combined Thermal and Photo-NIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>Resist deposition (spin coating, inkjet, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>②</td>
<td>Solid film</td>
<td>Liquid film</td>
<td>Solid film</td>
</tr>
<tr>
<td>③</td>
<td>T > T<sub>g</sub> = T<sub>imprint</sub></td>
<td></td>
<td>T > T<sub>g</sub> = T<sub>imprint</sub></td>
</tr>
<tr>
<td>④</td>
<td>Δp</td>
<td>(photo-curing @ RT)</td>
<td>Δp</td>
</tr>
<tr>
<td>⑤</td>
<td>T < T<sub>g</sub></td>
<td></td>
<td>(photo-curing)</td>
</tr>
<tr>
<td>⑥</td>
<td>Stamp release</td>
<td>Stamp release</td>
<td>Stamp release @ T<sub>imprint</sub></td>
</tr>
</tbody>
</table>
Soft UV-NIL technology

Standard Plate-to-Plate NIL Method

- Rigid substrates
- Rigid stamps

Stamp materials in use:
Si, SiO₂, Ni, „hard“ polymers (e.g. COC, OrmoStamp®)

Soft-NIL Technology

- Rigid, flexible or arbitrary shaped substrates
- Flexible stamps

Stamp materials in use:
Elastomers like PDMS, PFPE

Easy processing, low defect rate → growing industrial interest for HVM
State of the Art

Sylgard 184 PDMS
- Short admixed pot life time of 1.5 h
- Comparatively low Young’s Modulus

Generic resist formulations
- Stamp contamination by resist diffusion into PDMS over time
- Reduced stamp lifetime → typical imprint cycles ~25 with same PDMS stamp
- Limited potential for adjustment and development

Our Material Proposition

UV-PDMS KER-4690
- Pot life after mixing of several hours (> 24h) → longer time window for processing
- Two times higher Young’s Modulus

mr-NIL210 series
- Negligible diffusion of resist components into PDMS
- Strongly enhanced stamp lifetime → 50 imprints verified for X-PDMS and Sylgard 184, 30 cycles demonstrated with KER-4690
- Formulation based on modularity → customized tailoring feasible
Soft UV-NIL – Evaluation of long-term PDMS compatibility

Can components of mr-NIL210 permeate into PDMS stamp material?

Highly relevant for long-term PDMS-compatibility (high volume production)

Empirically evaluated by an extended contact time period between uncured mr-NIL210 and PDMS-stamp

In case of (slow) permeation

Imprint defects

In case of (fast) permeation

Negligible permeation

No imprint defects
Patterned Sapphire Substrates – Pattern Transfer by Dry Etching

mr-NIL210 series

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working stamp</td>
<td>UV-PDMS KER-4690</td>
</tr>
<tr>
<td>Area</td>
<td>10 x 10 cm²</td>
</tr>
<tr>
<td>Substrate</td>
<td>4 inch sapphire w/o Primer</td>
</tr>
<tr>
<td>Imprint</td>
<td>1000 mJ cm⁻² Hg bulb (365 nm) radiation, capillary force imprinting</td>
</tr>
<tr>
<td>Resist</td>
<td>mr-NIL210 series</td>
</tr>
<tr>
<td>Initial layer thickness</td>
<td>500 nm, minimized residual layer thickness</td>
</tr>
</tbody>
</table>

Verification of PSS fabrication by chlorine based dry etching using mr-NIL210 series

→ Selectivity 0.87
Photonic Crystals for HB-LEDs by nanoimprint lithography

- High aspect ratio patterns required (>3:1) in III-V materials
- Nanoimprint Resists for GaN patterning:
 - Etch-stable mr-I 8000R
 - SIPOL bilayer approach
Realization of High-brightness LEDs by Nanoimprint

Photonic crystals → Selective Area Photonic Crystals (SPC) via NIL using mr-I 8000R (thermal NIL)

No photonic crystal (NPC)

Full area photonic crystal (FPC)

Selective area photonic crystal (SPC)

78% output power enhancement using selective area photonic crystal (SPC)

SIPOL for high-aspect-ratio pattern fabrication

- Bilayer approach using transfer layer
- For patterned sapphire or GaN substrates
- Contains Silicon → **high dry etch resistance**

SIPOL imprint and dry etch process

- **SIPOL**
 - Transfer layer UL1
 - GaN / sapphire

- Low aspect ratio imprint
 - T-NIL
 - GaN / sapphire

- Etching of residual layer
 - Cl, F RIE
 - GaN / sapphire
 - O₂ RIE

- Formation of SiO₂ and relief amplification
 - Cl, F RIE
 - GaN / sapphire

First results: AR10 L&S in Si (Bosch process)

M Meserschmidt et al. Microelectron Eng 98 2012 107
Innovative material solutions 3

LED production chain

Alternative LED fabrication concept: Nanowire approach
- True white light LED chip without the need of an additional phosphor
- Nanowire fabrication by means of **nanoimprint lithography (NIL)**
 - Imprinting nanoholes and nanopattern transfer for controlled nanowire growing
 - Various nanoimprint resists available (mr-I 9000M)
LED production chain

Photoresists for single layer lift-off applications

- Fabrication of electrical contacts (Ag) and microelectronic finishing
- UV lithography, pattern transfer with PVD, and lift-off
- Negative photoresists:
 - ma-N 400 series
 - ma-N 1400 series
Negative Resists for UV lithography

ma-N 400 & ma-N 1400 series: conventional pattern transfer and single layer lift-off processes

- Excellent suitable for physical vapour deposition (PVD) and lift-off exhibiting tunable pattern profile
- High dry and wet etch resistance
- Good - excellent thermal stability of the resist patterns
- Suitable for broadband and i-line exposure
- Aqueous alkaline development
- Easy removal

Applications:
- Microelectronics and micro system technology
- Mask for lift-off processes
- Etch mask for semiconductors and metals
Negative Resists for UV lithography

ma-N 400 & ma-N 1400 series: generation of undercut patterns

ma-N 400, 2 µm thick, develop with ma-D 332/S

- **Time** → undercut
 - 90 s → 0 µm
 - 100 s → 0.5 µm
 - 140 s → 1.5 µm

ma-N 1400, 2 µm thick, develop with ma-D 533/S

- **Time** → undercut
 - 65 s → 0.6 µm
 - 80 s → 0.8 µm
 - 120 s → 2.1 µm

Differences

- Available film thicknesses
 - up to 7 µm ma-N 1400
 - up to 14 µm ma-N 400

- Sensitivity

- Thermal stability:
 - up to 160 °C ma-N 1400
 - up to 110 °C ma-N 400

- Shape of undercut
Potential Alternative Materials for LED Packaging: Hybrid polymers

- Hybrid polymers originally developed for micro-optical applications
- Excellent thermal stability and climate stability
- Alternative polymer matrix for the phosphors for white LEDs
 - **OrmoClear types**
UV-curable Inorganic-organic Hybrid Polymers

Inorganic-organic Hybrid Polymers based on ORMOCER® technology

- Optical (glass-like) polymers for micro-optical applications
- Multifunctional lithography material with negative resist behavior
- Application by spin-coating, casting, dispensing, ink-jetting,...
- LED- and Laser-based exposure

ORMOCER®s for micro-optics licensed by the Fraunhofergesellschaft zur Förderung der Angewandten Forschung in Deutschland e.V.

Unique features

- High thermal stability
- Excellent transparency
- Excellent mechanical properties
- High chemical and physical stability
- Excellent replication fidelity
Advanced Stability Features of Hybrid Polymers

General thermal stability of hybrid polymer products

- Thermal cycling test passed (layers on glass): 40x –40 °C to 85 °C
- Long term test passed: 3 days at 85°C and 85 % rel. humidity
- Slow decomposition only >300°C (TGA/DTG):

![Graph showing thermal stability data](image-url)
Advanced Stability Features of Hybrid Polymers

Tests regarding optical properties
– *Sunlight* and *thermal cycling reliability test* (1.5 µm OrmoComp®)
 → excellent optical properties preserved
– *SMT solder bump reflow test*: 3 x 6 min @ 260 °C
 → no yellowing observed
– *UV stability tests* passed: 300 h UV exposure at 60 °C
 → no influence on optical properties

Stability tests important for LED packaging:
– 440 nm exposure at 120°C, dose 2 W/cm², 7 weeks (1176 h)
 → no yellowing for OrmoClear
 → Polymer layers still optically clear
– Further tests under investigation

→ Material proposition: hybrid polymer OrmoClear as polymer matrix for the phosphors for white LEDs
micro resist technology GmbH – Summary

Negative Photoresists
- UV resists for single layer lift-off
 - ma-N 400
 - ma-N 1400
- DUV/ e-beam resists
 - ma-N 2400
 - mr-EBL 6000
- Direct Laser Writing
 - mr-DWL @ 405 nm
- Waveguide application
 - EpoCore / EpoClad

Positive Photoresists
- Standard UV-resists
 - ma-P 1200
- High viscosity UV-resists
 - ma-P 1275/
 - ma-P 1275HV
- Greyscale UV-resists
 - ma-P 1275G

NIL Materials
- Thermal NIL
 - mr-I 7000R/ 8000R
 - mr-I T85
 - mr-I 9000M
 - SIPOL
- Thermal / UV NIL
 - mr-NIL 6000E
- UV-based NIL
 - mr-NIL210
 - mr-UVCur series
 - mr-XNIL series

Hybrid Polymers
- Inorganic-organic hybrid polymers
 - Optical application
 - OrmoComp®
 - OrmoClear®FX
 - InkOrmo
 - Waveguide application
 - OrmoCore
 - OrmoClad
 - Transparent stamps
 - OrmoStamp®

Key strength of MRT: Our products can be tailored according to your industrial requirements

Our mission is to support emerging nano(fabrication) technologies with tailor-made material innovations
Thank you for your attention!

Come to our booth K0525!

Discuss with us on the **Sapphire Networking Reception** (Thursday 12:00-13:30)!

Dr. Marko Vogler
Chemist
Business Unit Manager
Nanoimprint Materials and Hybridpolymers

Köpenicker Str. 325
12555 Berlin - Germany
www.microresist.com
Tel.: +49 30 641670 179
Fax: +49 30 641670 200
E-Mail: m.vogler@microresist.de